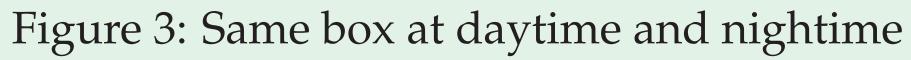
All-season 3D Object Recognition Challenges

{Levente.Tamas^{*a*}, Bjoern.Jensen^{*b*}}@bfh.ch

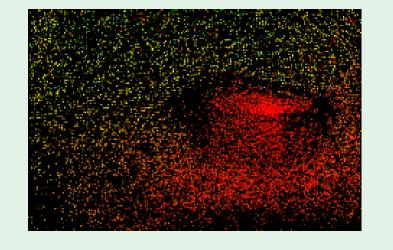
Motivation

Benchmark the discriminative power of 3D feature descriptors for *stereo vision* (Sv) and *Swiss ranger* (Sr) camera using outdoor data recorded daytime, nigh-time, rain and snow.


3D Outdoor object datasets

Outdoor 1 - 4m sized objects in several weather, light conditions. The 8 outdoor objects considered for the SVM classification benchmark for with the two cameras:

Stereo vision camera


Pros: returns RGB-D information 5-20Hz, at different ranges Cons: inefficient for texture-less regions e.g. snow, or poor light conditions e.g. night

Swiss ranger depth camera

Pros: gives XYZ-I information 10-20Hz, works at nightime too Cons: sensible to background ligth conditions (e.g. sunshine)

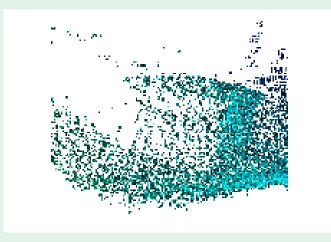
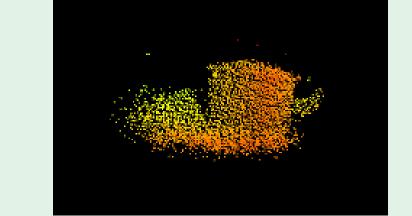
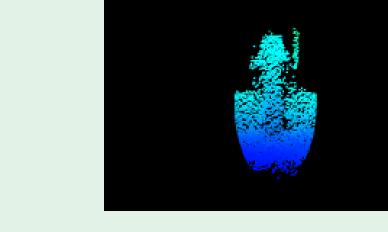
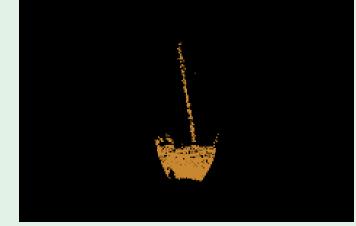
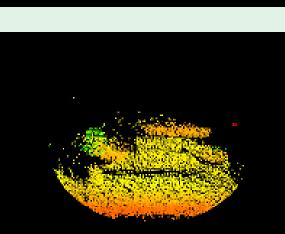



Figure 5: Same box at daytime and nightime


ROC of feature descriptors





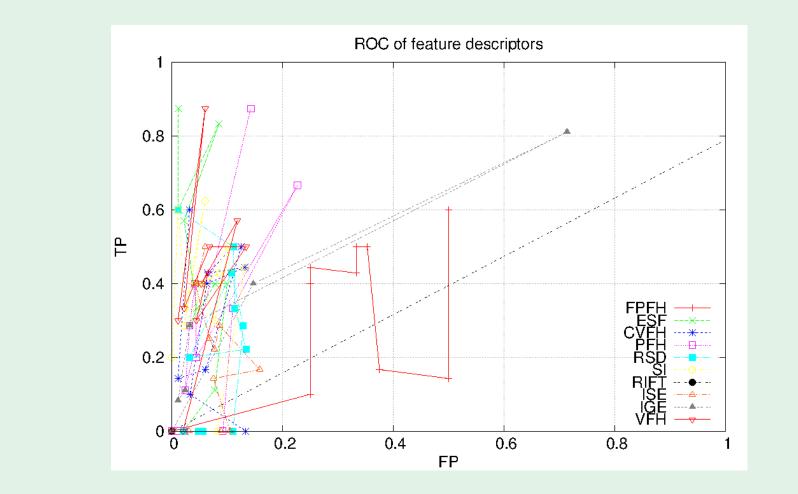
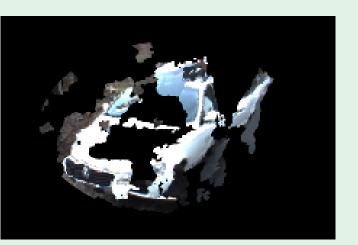
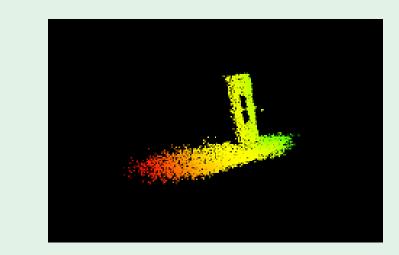
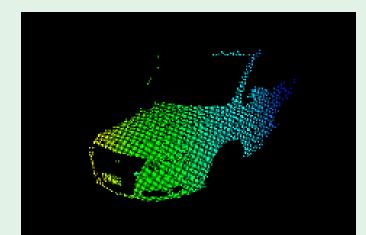


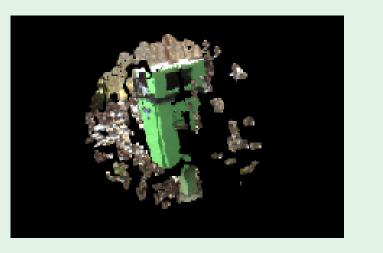
Figure 4: ROC curve for feature descriptors

P 0.4 0.4 0.2 0.0 0.2 0.4 0.4 0.2 0.4 0.5 FP


Figure 6: ROC curve for feature descriptors


Benchmarking results


Benchmarked 3D feature descriptors: VFH, CVFH, PFH, FPFH, RSD, RIFT, ISE, IGE, ESF. For the classification the SVM approach was adopted trained-evaluated on the these feature-descriptors.


Descr.	<i>Sv</i> _{day}	Srnighsnow	Sr _{nightmoon}	<i>Sr_{day}</i>
VFH	0.55	0.63	0.78	0.44
CVFH	0.61	0.61	0.69	0.51
PFH	0.62	0.56	0.71	0.37
FPFH	0.41	0.46	0.50	0.39
RSD	0.73	0.52	0.77	0.42
RIFT	0.59	0.54	0.69	0.33
SI	0.78	0.64	0.83	0.59
ISE	0.77	0.59	0.83	0.48
IGE	0.64	0.57	0.80	0.42
ESF	0.63	0.65	0.79	0.49

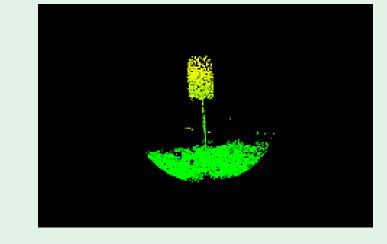


Figure 1: Objects captured with Sv and Sr

Challenging due to the weather/light changes

Table 1: Average output SVM classifier for the feature descriptors

Results of the feature descriptor comparison for the SR using the AC_d metrics for the SI type of feature-descriptor:

	box	cyl.	hyd.	sti.	tab.	tru.	car.	t-b.
box	0.3	0.0	0.0	0.1	0.1	0.2	0.1	0.2
cyl.	0.0	0.5	0.0	0.0	0.0	0.1	0.4	0.0
hyd.	0.0	0.1	0.6	0.0	0.0	0.2	0.0	0.0
sti.	0.0	0.0	0.1	0.8	0.0	0.1	0.0	0.0
tab.	0.0	0.1	0.0	0.0	0.5	0.3	0.0	0.2
tru.	0.0	0.0	0.0	0.3	0.1	0.6	0.0	0.0
car.	0.0	0.0	0.1	0.0	0.1	0.3	0.5	0.0
t-b.	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.6

H

Figure 2: Box in snow, moonlight, shadow, sun

Table 2: Rounded confusion matrix for the test outdoor objects using SVM and SI feature descriptors

Conclusions/future work: SR depth sensor proved to be robust against sevear weather changes for object recognition. As extension, the non-linear deformation modelling of the objects is proposed due to accumalated snow on the top of it.

Bern University of Applied Sciences

- a is affiliated with the Robotics Research Group from Technical University of Cluj-Napoca, RO
- ^b is affiliated with the roboticsLab from the Bern University of Applied Sciences, CH

This work was supported by Sciex-NMS project nr. 12.239