Relative Pose Estimation and Fusion of Omnidirectional and Lidar Cameras

Levente Tamas¹, Robert Frohlich², Zoltan Kato²
¹ Technical University of Cluj-Napoca, Robotics Research Group, Romania
² Institute of Informatics, University of Szeged, Hungary

Problem Statement

- Estimate the relative pose of an omnidirectional camera with respect to a 3D Lidar coordinate frame and fuse the different sensor data.
- Classical solution: point correspondence estimation
- Challenge: no radiometric information is available with the range data
- We directly work with segmented arbitrary planar regions
- Pose estimation formulated as a 2D-3D shape alignment
- Pose parameters obtained by solving a system of nonlinear equations

Camera Model

The omnidirectional camera is represented as a projection onto the surface of a unit sphere[1].

The image plane maps to the surface of sphere by:

\[\Phi(x) = x_S = \Psi(X) = \frac{RX + t}{||RX + t||} \]

A 3D world point \(X \) projects onto \(S \) considering the extrinsic pose parameters \(R, t \):

\[\Phi(x) = x_S = \Psi(X) = \frac{RX + t}{||RX + t||} \]

Proposed Solution

Point matches not available → Integrate out individual point pairs over spherical surface patches \(D_x \) and \(F_x \)

\[\int_{D_x} x_S \ dD_S = \int_{F_x} z_S \ dF_S \]

This gives us 2 equations only, but pose has 6 parameters

The integral is still valid if a function \(\omega : \mathbb{R}^3 \rightarrow \mathbb{R} \) acting on both sides.

\[\int_{D_x} \omega(x_S) \ dD_S = \int_{F_x} \omega(z_S) \ dF_S \]

We can generate independent equations by applying a set of nonlinear functions\[2\].

Using \(0 \leq i, j, k, n \leq 2 \) and \(i + j + k + n \leq 3 \) we obtain an overdetermined system of 15 equations.

The explicit form of the equation is obtained by parameterizing the surface patches \(D_x \) and \(F_x \) via \(\Phi \) and \(\Psi \) over the planar regions \(D \) and \(F \):

\[\int_{D_x} \omega(\Phi(x)) \left| \frac{\partial \Phi}{\partial x_1} \times \frac{\partial \Phi}{\partial x_2} \right| \ dx_1 \ dx_2 = \int_{F_x} \omega(\Psi(X)) \left| \frac{\partial \Psi}{\partial X_1} \times \frac{\partial \Psi}{\partial X_2} \right| \ dX_1 \ dX_2 \]

The above equation can be solved by LM algorithm.

Evaluation on Synthetic Data

- benchmark dataset of 2500 2D-3D synthetic image pairs
- simulating segmentation errors around the contour
- alignment error \((\delta)\) measured as the % of non-overlapping area of images

Evaluation on Real Data

- Rotation errors in degrees along the 3 axis.
- Translation errors in cm along the 3 axis.

Conclusion

- Instead of estimating point matches or using artificial markers we work on segmented planar patches.
- Pose estimation is formulated as a 2D-3D nonlinear shape alignment, pose parameters are obtained by solving a small system of nonlinear equations.
- The method proved to be robust against segmentation errors.

References

Acknowledgements

This research was partially supported by the European Union and the State of Hungary, co-financed by the European Social Fund through projects TÁMOP-4.2.1./B-10/1-2010-0501 National Excellence Program and FutureIT and grant no. TAMOP-4.2.2./B-10/1-2010-0013; as well as by NationalefdSW. The authors gratefully acknowledge the help of Olaf Dörschke from ECAL Labs, ETHZ in providing us with programmed velocity later scans, as well as the discussions with Rudi Dörschke and Gedeon Demortier in the early stage of this work. The catadioptric camera was provided by the Multimedia Technologies and Telecommunications Research Center of UTCN with the help of Camelia Florea.