PROGRAMAREA CONTROLERULUI SPC200 PENTRU COMANDA UNUI SISTEM PNEUMATIC DE POZIȚIONARE FESTO

Scopul lucrării

Scopul acestei lucrări este înțelegerea modului de funcționare a sistemului pneumatic de poziționare Festo și însușirea unor noțiuni de programare a controlerului SPC200 pentru comanda celor două axe de translație și a efectorului final din componența sistemului pneumatic.

1. Generalități

Standul pneumatic Festo (figura 1) conține un calculator de proces (1) două axe pneumatice de translație, una orizontală (axa X – 3)) și una verticală (axa Y – 2), un gripper pneumatic (5) conectat în partea inferioară a axei Y, un controler tip SPC200 (4) alimentat de la o sursa de curent continuu (7) și un sistem de oprire de urgență (6).

Figura 1. Standul pneumatic Festo

Programarea controlerului SPC200 se realizează cu ajutorul aplicației WinPISA 4.41. Aplicația permite crearea unor proiecte/programe noi, editarea unor programe existente, editarea listei cu poziții predefinite (*position list*), compilarea proiectelor/programelor, încărcarea și descărcarea programelor în/din memoria controlerului.

Programele pentru controlerul SPC200 se realizează în "*cod G*", limbaj de programare folosit în programarea mașinilor unelte cu comandă numerică.

2. Crearea unui proiect nou

Un proiect nou se creează apelând funcția "New Project" din meniul "File". Datele necesare pentru noul proiect sunt numele fișierului (.prj), titlul proiectului și descrierea proiectului (opțional).

Fereastra proiect (figura 2) asigură o ușoară gestionare a programelor pentru controler. Programele și lista cu poziții predefinite (figura 3) se găsesc în directorul "Software". Controlerul permite utilizarea a 100 de programe (numerotate de la 0 la 99). Lista cu poziții predefinite este unică pentru fiecare proiect și este creată automat împreună cu proiectul. Astfel, lista poate fi modificată dar nu poate fi recreată sau ștearsă.

Index	Sumbol	Avie X	Avie Y	Avie 7	Avia II	
IIIdox E	Symbol	0000	0019-1	0000	~~~0	- 6
0	POSO				100	=
1	POS1	1.1			0.50	
2	POS2		· ·)		1.0	
3	POS3					
4	POS4		•	•	8.03	
5	POS5	12	· ·		10.00	
6	POS6	10	÷	- 2	800	
7	POS7		•	-		
8	POS8				0.00	
9	POS9			-	0.00	
10	POS10		-	- 1	0.00	
11	POS11		-		1000	•

Figura 2. Fereastra Proiect

Figura 3. Lista cu poziții predefinite

Pașii pentru crearea unui program nou sunt următorii:

- Se selectează directorul "Software";
- Din meniul "Edit" se apelează funcția "Insert object";
- Se completează câmpurile "*Title*" și "*Description*" din fereastra nou deschisă;
- Se apelează butonul "*Ok*" pentru confirmare. Structura unui program este prezentată în figura 4.

 D:Program:
 Image: Constraint of the second sec

1 - Număr de înregistrare

- 2 Comandă (cod G)
- 3 Parametri comandă
- 4 Comentarii

Figura 4. Structura unui program

Pentru editarea unui program nou sunt necesare caracteristicile hardware ale axelor și controlerului. Caracteristicile hardware se obțin astfel:

- Se pornește sursa de alimentare a controlerului (figura 1, (7));
- Din meniul "Online" se apelează funcția "Online mode";
- Din meniul "Online->Upload" se apelează funcția "Hardware".

Caracteristicile axelor de translație ale standului sunt prezentate în figura 5.

Parameter set for the X axis	Parameter set for the Y axis
Axis parameters Application parameters Controller parameters	Axis parameters Application parameters Controller parameters
Moving mass without workpiece: 3.1 kg Max. workpiece mass: 0.0 kg Workpiece mass in the initial state: 0.0 kg Supply pressure: 6.0 bar Fitting position: 0 * Fitting offset: 0.00 mm Project zero point: 0.00 mm Lower software end position: 30.00 mm	Moving mass without workpiece: 31 kg Max. workpiece mass: 00 kg Workpiece mass in the initial state: 00 kg Supply pressure: 60 bar Fitting position: 0 * Fitting offset: 000 mm Project zero point: 000 mm Lower software end position: 200 mm
Upper software end position: 420.00 mm Positioning tolerance: 1.00 mm Positioning quality class: 5 Maximum speed: 1.0 m/s	Upper software end position:202.00 mm Positioning tolerance:1.00 mm Positioning quality class:5 Maximum speed:2.0 m/s
Maximum acceleration: 10.0 m/s² Reference speed: 50.0 mm/s Reference travel mode: 5 Ok Cancel Select	Maximum acceleration: _10.0 m/s² Reference speed: _50.0 mm/s Reference travel mode: 5

Figura 5. Caracteristicile axelor de translație

Un program pentru controlerul SPC200 este valid doar dacă fiecare linie are un număr de înregistrare. Atribuirea numărului de înregistrare se poate face manual sau automat. Controlerul permite încărcarea a maxim 100 de programe având în total maxim 2000 de linii de cod. Un program poate conține maxim 1000 de linii de cod. Numerotarea liniilor de cod se face începând de la 0 (N000) până la 999 (N999), fiecare linie având un număr de înregistrare unic. Pentru numerotare automată a liniilor se va apela funcția *"Start numbering"* din meniul *"Edit"*.

3. Comenzi pentru controlerul SPC200

G00

Sintaxă:

G00 [G90 | G91] [X | Y]<poziție>

unde <poziție>: [40-390] pentru axa X și [40-190] pentru axa Y

sau <poziție>: X@n Y@n (unde n – simbolul poziției din lista de poziții)

Descriere:

- poziționează efectorul final în coordonatele definite de <poziție>, cu viteză maximă, absolut sau relativ la poziția curentă (G90 sau G91)

ı:
ı.

1	
N000 G00 G91 X100	poziționează gripperul la 100mm în sens pozitiv pe axa X cu viteză maximă

Notă:

În cazul în care nu se folosește una din opțiunile G90 sau G91 poziționarea va fi absolută.

G01

Sintaxă:

G01 [G90 | G91] [X | Y]<poziție> F<X|Y><viteza>

unde <poziție>: [40-390] pentru axa X și [40-190] pentru axa Y

sau <poziție>: X@n Y@n (unde n – simbolul poziției din lista de poziții) <viteză>: reprezintă procent din viteza maximă [0..99] unde (0=100%,..., 99 = 99%)

Descriere:

- poziționează efectorul final în coordonatele definite de <poziție>, cu viteza definită de <viteză>, absolut sau relativ la poziția curentă (G90 sau G91)

Exemplu:

1	
N000 G01 X100 FX20 Y150 FY30	poziționează gripperul pe axa X la 100mm cu
	viteza 20% din viteza maximă, pe axa Y la 150mm
	cu viteza 30% din viteza maximă

Notă:

În cazul în care nu se folosește una din opțiunile G90 sau G91 poziționarea va fi absolută.

G04

G08

Sintaxă:

G08 [X | Y]<accelerație>

unde <accelerație>: reprezintă procent din accelerația maximă [0..99] unde $(0=100\%, \dots, 99=99\%)$

Descriere:

- setează accelerația axei X și/sau Y pentru apropierea de un punct de coordonate. *Exemplu:*

anonpun	
N000 G08 X50	Axa X este accelerată cu 50% din accelerația
N001 G01 X80 FX50	maximă în apropierea punctului X 80mm.
	Accelerația este setată la 100% după poziționarea
	în punctul X 80mm.

G09

Sintaxă: G09 [X | Y]<accelerație>

unde <accelerație>: reprezintă procent din accelerația maximă [0..99] unde (0=100%,...,99=99%)

Descriere:

- setează accelerația de frânare a axei X și/sau Y.

Exemplu:

N000 G09 X50	Accelerația de frânare este 50% din accelerația
N001 G01 X80 FX50	maximă înainte de atingerea punctului X 80mm.

G90

Sintaxă:

G90 [X | Y]<poziție>

unde <poziție>: [40-390] pentru axa X și [40-190] pentru axa Y

sau <poziție>: X@n Y@n (unde n – simbolul poziției din lista de poziții) Descriere:

- poziționează efectorul final în *coordonatele absolute* (relative față de sistemul de referință 0) definite de <poziție.

Exemplu:

1	
N000 G00 G90 X200	poziționează gripperul pe axa X la 200mm față de 0, cu viteză maximă

G91

Sintaxă: G91 [X | Y]<poziție>

unde <poziție>: [40-390] pentru axa X și [40-190] pentru axa Y

sau <poziție>: X@n și/sau Y@n (unde n – simbolul poziției din lista de poziții Descriere:

- poziționează efectorul final în *coordonatele relative* față de poziția curentă definite de <poziție>, în sens pozitiv sau negativ.

Exemplu:

1	
N000 G00 G91 X200	poziționează gripperul pe axa X la X+200mm față
N001 G00 G91 X-100	de punctul curent, cu viteză maximă; poziționează
	gripperul pe axa X la X-100mm față de punctul
	X+200, cu viteză maximă

M00

Sintaxă:	
M00	
Descriere:	
Oprește execuția unui program.	
Exemplu:	
N000 G01 X100 FX50	poziționează gripperul pe axa X la 100mm față de
N001 M00	0, cu 50% din viteza maximă; oprește execuția
	programului

M02

Sintaxă:	
M02	
Descriere:	
Oprește execuția unui sub-program.	
Exemplu:	
N000 G01 X100 FX50	poziționează gripperul pe axa X la 100mm față de
N001 M02	0, cu 50% din viteza maximă; oprește execuția
	sub-programului

M30

Sintaxă:	
M30	
Descriere:	
Repetă un program.	
Exemplu:	
N000 G01 X100 FX50	poziționează gripperul pe axa X la 100mm față de
N001 M30	0, cu 50% din viteza maximă; repetă execuția
	programului

L

 Exemplu:
 poziționează gripperul pe axa X la 100mm față

 N000 G01 X100 FX50
 poziționează gripperul pe axa X la 100mm față

 N001 M30
 0, cu 50% din viteza maximă; repetă exec

 programului
 programului

.

L < n >

unde <n>: numărul programului din memoria controlerului;

Descriere:

Lansează în execuție un sub-program.

Exemplu:

1	
N000 G01 X100 FX50	poziționează gripperul pe axa X la 100mm față de
N001 1	0, cu 50% din viteza maximă; lansează în execuție
	sub-programul 1.

#SQ

a 13.15);
Setează bitul portului 0.0 (semnal "1" logic).

#RQ

Sintaxă: #RQ<n.n> unde <n.n>: numărul portului (de la 0.0 la 13.15); Descriere: Resetează bitul unui port de ieșire. Exemplu: N000 #RQ0.0 Resetează bitul portului 0.0 (semnal "0" logic).

E05

 Sintaxă:

 E <număr de înregistrare>

 Descriere:

 Execută un salt necondiționat la linia <număr de înregistrare> din program.

 Exemplu:

 N010 G00 G91 X10

 N012 E05 030

 ...

 N030 G00 G90 X100

#T

Sintaxă:

#T<I | Q><n.n> <număr de înregistrare>

unde I : port de intrare;

Q: port de ieşire;

<n.n>: numărul portului (de la 0.0 la 13.15);

Descriere:

Testează valoarea unui port (intrare sau ieșire). Dacă valoarea este "1" logic trece la linia <număr de înregistrare>. Dacă valoarea este "0" logic, execută linia următoare.

Exemplu:	
N010 #TI0.0 12	Testează bitul portului de intrare 0.0 pentru
N011 E05 10	valoarea "1" logic. Trece la linia 012 dacă bitul
N012 G01 V100 EV50	este 1. Re-execută linia 010 dacă bitul este "0"
	logic.

#TN

Sintaxă:

#TN<I | Q><n.n> <număr de înregistrare>

unde I : port de intrare;

Q: port de ieşire;

<n.n>: numărul portului (de la 0.0 la 13.15);

Descriere:

Testează valoarea unui port (intrare sau ieșire). Dacă valoarea este "0" logic trece la linia <număr de înregistrare>. Dacă valoarea este "1" logic, execută linia următoare.

Exemplu:	
N010 #TNI0.0 12	Testează bitul portului de intrare 0.0 pentru
N011 E05 10	valoarea "O" logic. Trece la linia 012 dacă bitul
N012 G01 Y100 FY50	este 0. Re-executa finia 010 daca bitul este "1
	logic.

#LR

 Sintaxă:

 #LR<Registru> = <valoare>

 unde
 <Registru>: numărul registrului (între 0 și 99);

 <valoare>: valoare întreagă între -32768 și 32767

 Descriere:
 Salvează o valoare întreagă <valoare> în registrul <Registru> .

 Exemplu:
 N010 #LR0=0

 Salvează valoarea "0" în registrul 0.

#AR

Sintaxă: #AR<Registru> = <valoare>

unde <Registru>: numărul registrului (între 0 și 99);

<valoare>: valoare întreagă între -32768 și 32767

Descriere:

Incrementează valoarea salvată în registrul <Registru> cu valoarea întreagă <valoare>. *Exemplu:*

N010 #LR0=0	Salvează valoarea "0" în registrul 0. Incrementează
N011 #AR0=1	cu "1" valoarea registrului "0".

#TR

Sintaxă:

#TR<Registru> = <valoare> <număr de înregistrare>

unde <Registru>: numărul registrului (între 0 și 99);

<valoare>: valoare întreagă între -32768 și 32767

Descriere:

Testează valoarea salvată în registrul <Registru>. Dacă valoarea este egală <valoare>, execută un salt la linia <număr de înregistrare>. Dacă nu, execută linia următoare.

Exer	np	lu

<i>r</i>	
N009 #LR0=0	Salvează valoarea "0" în registrul 0; Execută sub-
N010 L1	programul 1. Incrementează cu "1" valoarea registrului0". Dacă valoarea registrului este 4.
N011 #AR0=1 N012 #TR0=4 14	execută linia 014. Dacă nu, execută un salt
N013 E010	
N014 G01 X100 FX20	

4. Compilarea și execuția programelor

Programele din cadrul unui proiect se compilează cu ajutorul funcției "*Project*" din meniul "*Compile*". După compilare, aplicația WinPISA va afișa într-o fereastră rezultatul compilării. În cazul în care există erori de compilare, acestea vor fi afișate indicându-se liniile din program în care apar erorile.

Pașii pentru salvarea unui proiect în memoria controlerului sunt următorii:

- Se salvează toate programele din cadrul proiectului;
- Se pornește sursa de alimentare a controlerului (figura 1, (7));
- Se activează modul "Online" cu ajutorul funcției "Online mode" din meniul "Online";
- Se apelează funcția "Project" din meniul "Online->Download".

Pentru lansarea în execuție a unui program se apelează funcția "*Control axes*" din meniul "*Online*" (în mod *online*). WinPISA va deschide o fereastră cu programele existente în memoria controlerului. Se va selecta programul dorit pentru lansare în execuție.

IMPORTANT !!!

Înainte de lansarea în execuție a oricărui program, se va pune în funcțiune standul, astfel:

- Se va porni compresorul și se va aștepta până ce manometrul acestuia indică presiunea de 6 [bar].
- Se va deschide <u>foarte încet</u> robinetul de siguranță (de culoare roșie) de pe filtrul de la alimentarea cu presiune a standului, prin rotire în sens orar până ce butonul robinetului se află în poziție orizontală (deschis). La deschiderea robinetului, axa Y se va deplasa automat în poziția maximă.
- Se va lansa în execuție programul dorit.
- În cazul constatării unei funcționări necorespunzătoare a standului, se va acționa butonul pentru oprire de siguranță (figura 1 (6)).

5. Exerciții propuse

1)

I

Să se realizeze un proiect care să conțină programul din figura 6.

👔 2 : Program : program 2	- • •
N000 G01 X100.00 FX10 Y150.00 FY10	
N001 #SQ1.0	
N002 #RQ1.1	
N003 #TI1.0 5	
N004 E05 3	
N005 G01 Y180.00 FY10	
N006 G01 X300.00 FX10	
N007 G01 Y100.00 FY10	
N008 #RQ1.0	
N009 #SQ1.1	
N010 #TI1.1 12	
N011 E05 10	
N012 G01 Y150.00 FY10	
N013 M30	

Figura 6. Program demonstrativ

- Să se identifice rolul fiecărei linii din program.

- Să se identifice secvențele de cod utilizate pentru deschiderea și închiderea gripperului.

2)

Să se realizeze un program care poziționează gripperul sistemului de poziționare în următoarele puncte:

	Poziție pe axa X	Poziție pe axa Y	Viteza axei X	Viteza axei Y
	[mm]	[mm]	[m/s]	[m/s]
1	120	80	0.30	0.50
2	120	130	0.30	2.00
3	330	130	1.00	2.00
4	330	60	1.00	1.00

3)

Să se realizeze un program pentru o aplicație de paletizare știind că:

- piesele prelucrate sunt de două tipuri iar prelucrarea lor se face alternativ la fiecare 20 de secunde.

- magazia cu piese are coordonatele (x,y) = (360,50);

- paleții pentru cele două tipuri de piese au coordonatele (x,y)=(70,60) respectiv (x,y) = (100,60);
- în zona de deplasare există un obstacol dreptunghiular de lungime 150mm (de la X=150mm până la X=300mm) și înălțime 50mm (de la Y=80mm până la Y=130mm);
- viteza de deplasare nu poate fi mai mare de 1 m/s (pentru ambele axe);
- accelerația la oprire în punctele de deschidere şi închidere a gripperului nu poate depăşi 0.5 m/s² pe axa Y;
- numărul de piese prelucrate este de 6 (câte 3 din fiecare tip);
- proiectul trebuie să conțină un program principal care numără piesele prelucrate și două sub-programe apelate din programul principal (câte unul pentru fiecare palet);
- punctele prin care va trece efectorul final (inclusiv punctele de încărcare/descărcare a pieselor) trebuie definite și preluate din lista de poziții (figura 3).