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Chapter 1
Theory of maxima and minima

The classical theory of maxima and minima provides analytical methods for finding solutions of optimiza-
tion problems involving continuous and differentiable functions and making use of differential calculus.
Applications of these techniques may be limited since many of the practical problems involve functions
that are not continuous or differentiable. But the theory of maxima and minima is the fundamental starting
point for numerical methods of optimization and a basis for advanced topics like calculus of variations or
optimal control.

This chapter presents the necessary and sufficient conditions in locating the optimum solutions for
unconstrained and constrained optimization problems for single-variable functions or multivariable func-
tions.

1.1 Statement of an optimization problem. Terminology

Given a vector of n independent variables:

x = (x1 x2 . . . xn)T (1.1)

and a scalar function:
f : Rn → R (1.2)

an optimization problem (P) can be formulated as follows:

min
x

f(x)
(

or max
x

f(x)
)

(1.3)

subject to:

gi(x) = 0, i = 1,m (1.4)
hj(x) ≤ 0, j = 1, p (1.5)

The goal of the problem is to find the vector of parameters x which minimizes (or maximizes) a given
scalar function, possibly subject to some restrictions on the allowed parameter values. The function f to
be optimized is termed the objective function; the elements of vector x are the control or decision variables; the
restrictions (1.4) and (1.5) are the equality or inequality constraints.

The value x∗ of the variable which solves the problem is a minimizer (or maximizer) of function f subject
to the constraints (1.4) and (1.5), and f(x∗) is the minimum (or maximum) value of the function subject to
the same constraints.

If the number of constraints m + p is zero, the problem is called an unconstrained optimization problem.
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Chapter 1. Theory of maxima and minima

The admissible set or feasible region of (P), denoted S, is defined as:

S = {x ∈ Rn : gi(x) = 0, hj(x) ≤ 0} (1.6)

Example 1.1 Consider the problem:
min

(x1,x2)
(1− x1)2 + (1− x2)2 (1.7)

subject to

x1 + x2 − 1 ≤ 0, (1.8)
x3

1 − x2 ≤ 0 (1.9)

Figure 1.1: Feasible region

The function to be minimized is f(x1, x2) = (1 − x1)2 + (1 − x2)2 and the constraint functions: h1(x1, x2) =
x1 + x2 − 1 and h2(x1, x2) = x3

2 − x2.
Figure 1.1 shows the contour plot of the objective function, i.e. the curves in two dimensions on which the value

of the function f(x1, x2) is constant. The feasible region, obtained as the area on which the inequalities (1.8) and (1.9)
hold, is shown in the same figure.

As shown in Figure 1.2, the minimum values of a function f are the maximum of −f . Therefore, the
optimization problems will be stated, in general, as minimization problems. The term extremum includes
both maximum and minimum.

A point x0 is a global minimum of f(x) if:

f(x0) < f(x), ∀x ∈ S (1.10)

A point x0 is a strong local minimum if there exists some ∆ > 0, such that:

f(x0) < f(x), when |x− x0| < ∆ (1.11)

A point x0 is a weak local minimum if there exists some ∆ > 0, such that:

f(x0) ≤ f(x), when |x− x0| < ∆ (1.12)
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1.2. Unconstrained optimization
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Figure 1.3: Minimum points. x1: weak local minimum, x2: global minimum, x3: strong local minimum

1.2 Unconstrained optimization

1.2.1 Necessary conditions for maxima and minima

The existence of a solution to an optimization problem (P), for a continuous function f , is guaranteed by
the extreme value theorem of Weierstrass, which states:

Theorem 1.1 If a function f(x) is continuous on a closed interval [a, b], then f(x) has both a maximum and a
minimum on [a, b]. If f(x) has an extremum on an open interval (a, b), then the extremum occurs at a critical point,
(Renze and Weisstein, 2004).

A single variable function f(x) has critical points at all points x0, where the first derivative is zero
(f ′(x0) = 0), or f(x) is not differentiable.

A function of several variables f(x) has critical points, where the gradient is zero or partial derivatives
are not defined.

In general, a stationary point of a function f(x) is a point for which the gradient vanishes:

∇f(x0) = 0 (1.13)

where

∇f(x0) =
(

∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

)T

(1.14)

A stationary point of a single variable function is a point where the first derivative f(x0) equals zero.

Example 1.2 Consider the cases in the Figure 1.4.
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Figure 1.4: Stationary points

a) In Figure 1.4 a) the point x1 is the global minimizer.

b) In Figure 1.4 b) there are three stationary points: x2 is a global minimizer, x3 - a local maximizer and x4 - a local
minimizer.

c) In Figure 1.4 c) x5 is a stationary point because the first derivative of f vanishes, but it is not a maximizer nor a
minimizer; x5 is an inflection point. For f : [a, b] → R the point x = a is the global minimizer on the interval
[a, b].

The only case, when the minimizer (or maximizer) is not a stationary point, is when the point is one of
the endpoints of the interval [a, b], on which f is defined. That is, any point interior to this interval, that is
a maximum must be a stationary point.

The first-order condition: The necessary condition for a point x to be a minimizer (or a maximizer) of the
function f : [a, b] → R is: if x ∈ (a, b), then x is a stationary point of f .

Local extrema of a function f : [a, b] → Rmay occur only at:

• boundaries

• stationary points (the first derivative of f is zero)

In case the function is non-differentiable at some points in [a, b], the function has also extreme values.
For a function of n independent variables f :Rn → R, the necessary condition for a point x0 =

(x1 x2 . . . xn)T to be an extremum is the gradient equals zero.
For functions of n variables, the stationary points can be: minima, maxima or saddle points.

1.2.2 Sufficient conditions for maxima and minima

Since not all stationary points are necessarily minima or maxima (they can be also inflection or saddle
points) we may be able to determine their character by examining the second derivative of the function at
the stationary point. These sufficient conditions will be developed for single variable functions and then
extended for two or n variables based on the same concepts. The global minimum or maximum has to be
located by comparing all local maxima and minima.

1.2.2.1 Sufficient conditions for single variable functions

Second-order conditions for optimum. Let f be a single variable function with continuous first and second
derivatives, defined on an interval S, f : S → R, and x0 is a stationary point of f so that f ′(x0) = 0.

The Taylor series expansion about the stationary point x0 is one possibility to justify the second-order
conditions:

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 + higher order terms (1.15)
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1.2. Unconstrained optimization

For the points x sufficiently close to x0 so the higher order terms become negligible compared to the
second-order terms, and knowing the first derivative is zero at a stationary point, the equation (1.15) be-
comes:

f(x) = f(x0) +
1
2
f ′′(x0)(x− x0)2 (1.16)

Since (x − x0)2 is always positive, we can determine whether x0 is a local maximum or minimum by
examining the value of the second derivative f ′′(x0):

• If f ′′(x0) > 0, the term 1
2f ′′(x0)(x − x0)2 will add to f(x0) in the equation (1.16), so the value of f at

the neighboring points x is greater than f(x0). In this case x0 is a local minimum.

• If f ′′(x0) < 0, the term 1
2f ′′(x0)(x−x0)2 will subtract from f(x0) and the value of f at the neighboring

points x is less than f(x0). In this case x0 is a local maximum.

• If f ′′(x0) = 0 it is necessary to examine the higher order derivatives. In general if f ′′(x0) = ... =
f (k−1)(x0) = 0, the Taylor series expansion becomes

f(x) = f(x0) +
1
k!

f (n)(x0)(x− x0)k (1.17)

– If k is even, then (x−x0)k is positive. Thus, if f (k)(x0) > 0, then f(x0) is a minimum; if f (k)(x0) <
0 then f(x0) is a maximum (Figure 1.5).

– If k is odd, then (x − x0)k changes sign. It is positive for x > x0 and negative for x < x0.
If f (k)(x0) > 0, the second term in the equation (1.17) is positive for x > x0 and negative for
x < x0. If f (k)(x0) < 0, the second term in the equation (1.17) is negative for x > x0 and positive
for x < x0. The stationary point is an inflection point (Figure 1.5).

Figure 1.5: Minimum, maximum and inflection points

These results can be summarized in the following rules:

• If f ′′(x0) < 0, then x0 is a local maximizer.

• If f ′′(x0) > 0, then x0 is a local minimizer.

• If f ′′(x0) = ... = f (k−1)(x0) = 0 and:

– If k is even and

∗ If f (k)(x0) < 0, then x0 is a local maximizer.
∗ If f (k)(x0) > 0, then x0 is a local minimizer.

– If k is odd, then x0 is an inflection point.
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Chapter 1. Theory of maxima and minima

Example 1.3 Locate the extreme points of the following function:

f(x) =
x5

5
− x3

3
(1.18)

The first derivative is:
f ′(x) = x4 − x2 = x2(x2 − 1) = x2(x− 1)(x + 1) (1.19)

The stationary points are obtained by setting the first derivative equal to zero:

x1 = 1; x2 = −1; x3 = x4 = 0; (1.20)

The second derivative:
f ′′(x) = 4x3 − 2x (1.21)

calculated at points x1,2,3,4 is:
f ′′(1) = 2, f ′′(−1) = −2; f ′′(0) = 0 (1.22)

Because f ′′(1) > 0 and f ′′(−1) < 0, the stationary point x1 = 1 is a local minimum and x2 = −1 is a local
maximum. Since the second derivative is zero at x3,4 = 0, an analysis of higher order derivatives is necessary. The
third derivative of f :

f ′′′(x) = 12x2 − 2 (1.23)

is nonzero for x3,4 = 0. Since the order of the first nonzero derivative is 3, i.e. it is odd, the stationary points
x3 = x4 = 0 are inflection points. A plot of the function showing the local minimum, maximum and inflection points
is shown in Figure 1.6.
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Figure 1.6: Plot of f(x) = x5/5− x3/3

Example 1.4 Consider the function
f(x) = 4x− x3/3 (1.24)

Determine the maximum and minimum points in the region:

−3 ≤ x ≤ 1 (1.25)

Compute the first derivative of f(x) and set it equal to zero:

f ′(x) = 4− 2x2 = 0 (1.26)

The stationary points of the function are x10 = −2 and x20 = 2. Since the variable is constrained by (1.25) and x20

is out of the bounds, we shall analyze the other stationary point and the boundaries. The second derivative:

f ′′(x10) = −2x10 = −2 · (−2) = 4 > 4 (1.27)

is positive at x10, thus −2 is a local minimum, as shown in Figure 1.7. According to the theorem of Weierstrass,
the function must have a maximum value in the interval [−3, 1]. On the boundaries, the function takes the values:
f(−3) = −3 and f(1) = 11/3. Thus, the point x = 1 is the maximizer in [−3, 1].

10



1.2. Unconstrained optimization
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Figure 1.7: Plot of f(x) = 4x− x3/3

1.2.2.2 Sufficient conditions for two independent variables

Second derivative test
Let f(x1, x2) be a two-dimensional function and denote the first-order partial derivatives of f with

respect to x1 and x2 by:
∂f(x1, x2)

∂x1
= fx1 ,

∂f(x1, x2)
∂x2

= fx2 (1.28)

and the second-order partial derivatives:

∂f(x1, x2)
∂xi∂xj

= fxixj , i, j = 1, 2 (1.29)

If f(x1, x2) has a local extremum at a point (x10,x20) and has continuous partial derivatives at this point,
then

fx1(x10, x20) = 0, fx2(x10, x20) = 0 (1.30)

The second partial derivatives test classifies the point as a local maximum or local minimum.
Define the second derivative test discriminant as:

D2 = fx1x1fx2x2 − f2
x1x2

(1.31)

Then, (Weisstein, 2004)

• If D2(x10, x20) > 0 and fx1x1(x10, x20) > 0, the point is a local minimum

• If D2(x10, x20) > 0 and fx1x1(x10, x20) < 0, the point is a local maximum

• If D2(x10, x20) < 0 , the point is a saddle point

• If D2(x10, x20) = 0 the test is inconclusive and higher order tests must be used.

Note that the second derivative test discriminant, D2, is the determinant of the Hessian matrix:

H2 =
[

fx1x1 fx1x2

fx1x2 fx2x2

]
(1.32)

Example 1.5 Locate the stationary points of the function:

f(x1, x2) = x2
1 − x2

2 (1.33)

and determine their character.
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Chapter 1. Theory of maxima and minima

The stationary points are computed by setting the gradient equal to zero:

fx1 = 2x1 = 0 (1.34)
fx2 = −2x2 = 0 (1.35)

The function has only one stationary point: (x10, x20) = (0, 0). Compute the second derivatives:

fx1x1 = 2, fx1x2 = 0, fx2x2 = −2 (1.36)

and the determinant of the Hessian matrix is:

D2 =
∣∣∣∣

fx1x1 fx1x2

fx1x2 fx2x2

∣∣∣∣ = fx1x1fx2x2 − f2
x1x2

= 2 · (−2)− 02 = −4 < 0 (1.37)

According to the second derivative test, the point (0, 0) is a saddle point. A mesh and contour plot of the function
is shown in Figure 1.8.
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Figure 1.8: Mesh and contour plot of f(x1, x2) = x2
1 − x2

2

Example 1.6 Locate the stationary points of the function:

f(x1, x2) = 1− x2
1 − x2

2 (1.38)

and determine their character.
Compute the stationary points from:

fx1 = −2x1 = 0 (1.39)
fx2 = −2x2 = 0 (1.40)

The function has only one stationary point: (x10, x20) = (0, 0). The second derivatives are:

fx1x1 = −2 < 0, fx1x2 = 0, fx2x2 = −2 (1.41)

and the discriminant:

D2 =
∣∣∣∣

fx1x1 fx1x2

fx1x2 fx2x2

∣∣∣∣ = fx1x1fx2x2 − f2
x1x2

= (−2) · (−2)− 02 = 4 > 0 (1.42)

Thus, the function has a maximum at (0, 0), because fx1x1 < 0 and D2 > 0. The graph of the function is shown
in Figure 1.9.
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Example 1.7 Locate the stationary points of the function:

f(x1, x2) = x2
1 + 2x1x2 + x4

2 − 2 (1.43)

and determine their character.
Compute the stationary points from:

fx1 = 2x1 + 2x2 = 0 (1.44)
fx2 = 2x1 + 4x3

2 = 0 (1.45)

From (1.44) and (1.45):

x1 = −x2, x1 − 2x3
1 = 0, or x1(1−

√
2x1)(1 +

√
2x1) = 0

and the stationary points are: (0, 0), (1/
√

2,−1/
√

2) and (−1/
√

2, 1/
√

2).
The second derivatives are:

fx1x1 = 2, fx1x2 = 2, fx2x2 = 12x2
2 (1.46)

and the discriminant:

D2 =
∣∣∣∣

fx1x1 fx1x2

fx1x2 fx2x2

∣∣∣∣ =
∣∣∣∣

2 2
2 12x2

2

∣∣∣∣ = 24x2
2 − 4 (1.47)

• For x2 = 0, D2 = −4 < 0 and (0, 0) is a saddle point

• For x2 = −1/
√

2, D2 = 24/2− 4 = 8 > 0 and (1/
√

2,−1/
√

2) is a minimum

• For x2 = 1/
√

2, D2 = 8 > 0 and (−1/
√

2, 1/
√

2) is also a minimum

A plot of the function and the contour lines are shown in Figure 1.10.

1.2.2.3 Sufficient conditions for n independent variables

Second derivative test
Let f : Rn → R be a function of n independent variables, and x0 = [x10 x20 . . . xn0]T a stationary point.

The Taylor series expansion about x0 is:

f(x) = f(x0) +∇f(x0)T (x− x0) +

+
1
2
(x− x0)TH2(x− x0) + higher order terms (1.48)
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1 + 2x1x2 + x4

2 − 2

where H2 is the Hessian matrix defined by:

H2 =




fx1x1 fx1x2 . . . fx1xn

fx2x1 fx2x2 . . . fx2xn

. . . . . . . . . . . .
fxnx1 fxnx2 . . . fxnx2


 (1.49)

If x is sufficiently close to x0, the terms containing (xi − xi0)k, k > 2 become very small and higher
order terms can be neglected. The first derivatives of f are zero at a stationary point, thus the relation (1.48)
can be written as:

f(x) = f(x0) +
1
2
(x− x0)TH2(x− x0) (1.50)

The sign of the quadratic form which occurs in (1.50) as the second term in the right hand side will
decide the character of the stationary point x0, in an analog way as for single variable functions.

According to (Hancock, 1960), we can determine weather the quadratic form is positive or negative by
evaluating the signs of the determinants of the upper-left sub-matrices of H2:

Di =

∣∣∣∣∣∣∣∣

fx1x1 fx1x2 . . . fx1xi

fx2x1 fx2x2 . . . fx2xi

. . . . . . . . . . . .
fxix1 fxix2 . . . fxix2

∣∣∣∣∣∣∣∣
, i = 1, n (1.51)

• If Di(x0) > 0, i = 1, n, or H2 is positive definite, the quadratic form is positive and x0 is a local
minimizer of f .

• If Di(x0) > 0, i = 2, 4, ... and Di(x0) < 0, i = 1, 3, ..., or H2 is negative definite, the quadratic form
is negative and x0 is a local maximizer of f .

• If H2 has both positive and negative eigenvalues, x0 is a saddle point

• otherwise, the test is inconclusive.

Note that if the hessian matrix is positive semidefinite or negative semidefinite, the test is also inconclusive.
The sufficient conditions presented above are the same as the ones stated for two independent vari-

ables, when n = 2. For example, a stationary point (x10, x20) is a local maximizer of a function f when
fx1x1(x10, x20) = D1(x10, x20) < 0 and D2(x10, x20) > 0.

Example 1.8 Compute the stationary points of the function:

f(x1, x2, x3) = x3
1 − 3x1 + x2

2 + x2
3 (1.52)
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1.3. Constrained optimization

and classify them.
The first derivatives are:

fx1 = 3x2
1 − 3, fx2 = 2x2, fx3 = 2x3 (1.53)

If they are set to zero we obtain two stationary points:

x10 = 1, x20 = 0, x30 = 0
x10 = −1, x20 = 0, x30 = 0 (1.54)

The second-order derivatives:

fx1x1 = 6x1, fx2x2 = 2, fx3x3 = 2, fx1x2 = fx1x3 = fx2x3 = 0 (1.55)

will form the Hessian matrix:

H2 =




6x1 0 0
0 2 0
0 0 2


 (1.56)

For (1, 0, 0) the determinants of the upper-left submatrices:

D1 = 6 > 0, D2 =
∣∣∣∣

6 0
0 2

∣∣∣∣ = 12 > 0,

D3 =

∣∣∣∣∣∣

6 0 0
0 2 0
0 0 2

∣∣∣∣∣∣
= 24 > 0 (1.57)

are all positive, so the stationary point is a minimizer of f(x1, x2, x3).
For (−1, 0, 0) the determinants D1, D2, D3 are all negative, as resulted from:

D1 = −6 < 0, D2 =
∣∣∣∣
−6 0
0 2

∣∣∣∣ = −12 < 0,

D3 =

∣∣∣∣∣∣

−6 0 0
0 2 0
0 0 2

∣∣∣∣∣∣
= −24 < 0 (1.58)

The Hessian matrix is diagonal, the eigenvalues are easily determined as−6, 2, 2. Because they do not have the same
sign and are nonzero (−1, 0, 0) is a saddle point.

1.3 Constrained optimization

1.3.1 Problem formulation

A typical constrained optimization problem can be formulated as:

min
x

f(x) (1.59)

subject to

gi(x) = 0, i = 1,m (1.60)
hj(x) ≤ 0, j = 1, p (1.61)

where x is a vector of n independent variables, [x1 x2 . . . xn]T , and f , gi and hj are scalar multivariate
functions.
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Chapter 1. Theory of maxima and minima

In practical problems, the values of independent variables are often limited since they usually represent
physical quantities. The constraints on the variables can be expressed in the form of equations (1.60) or
inequalities (1.61). A solution of a constrained optimization problem will minimize the objective function
while satisfying the constraints.

In a well formulated problem, the number of equality constraints must be less or equal to the number
of variables, m ≤ n. The constraints (1.60) form a system of m (in general) nonlinear equations with n
variables. When m ≥ n, the problem is overdetermined and the solution may not exist because there are
more equations than variables. If m = n the values of the variables are uniquely determined and there is
no problem of optimization.

At a feasible point x, an inequality constraint is said to be active (or tight) if hj(x) = 0 and inactive (or
loose) if the strict inequality hj(x) < 0 is satisfied.

Example 1.9 Minimize
f(x1, x2) = x2

1 + x2
2 (1.62)

subject to
g(x1, x2) = x1 + 2x2 + 4 = 0 (1.63)

The plot of the function and the constraint are illustrated in Figure 1.11, as a 3D surface and contour lines.
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Figure 1.11: Mesh and contour plot of f(x1, x2) = x2
1 + x2

2 and the constraint x1 + 2x2 + 4 = 0

The purpose now is to minimize the function x2
1 + x2

2 subject to the condition that the variables x1 and x2 lie on
the line x1 + 2x2 + 4 = 0. Graphically, the minimizer must be located on the curve obtained as the intersection of the
function surface and the vertical plane that passes through the constraint line. In the x1 − x2 plane, the minimizer
can be found as the point where the line x1 + 2x2 + 4 = 0 and a level curve of x2

1 + x2
2 are tangent.

1.3.2 Handling inequality constraints

Optimization problems with inequality constraints can be converted into equality-constrained problems
and solved using the same approach. In this course, the method of slack variables is presented.

The functions hj(x) from the inequalities (1.61) can be set equal to zero if a positive quantity is added:

hj(x) + s2
j = 0, j = 1, p (1.64)

Notice that the slack variables sj are squared to be positive. They are additional variables, so the number of
the unknown variables increases to n + p.

An inequality given in the form:
hj(x) ≥ 0, j = 1, p (1.65)

can also be turned into an equality if a positive quantity is subtracted from the left hand side:

hj(x)− s2
j = 0, j = 1, p (1.66)
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1.3. Constrained optimization

Example 1.10 Maximize
f(x1, x2) = −x2

1 − x2
2 (1.67)

subject to
x1 + x2 ≤ 4 (1.68)

The inequality (1.68) is converted into an equality by introducing a slack variable s2
1:

x1 + x2 − 4 + s2
1 = 0 (1.69)

The unknown variables are now: x1, x2 and s1.

1.3.3 Analytical methods for optimization problems with equality constraints. Solution by
substitution

This method can be applied when it is possible to solve the constraint equations for m independent vari-
ables, where the number of constraints is less than the total number of variables m ≤ n. The solution of
the constraint equations is then substituted into the objective function. The new problem will have n −m
unknowns, it will be unconstrained and the techniques for unconstrained optimization can be applied.

Example 1.11 Let w, h, d be the width, height and depth of a box (a rectangular parallelepiped). Find the optimal
shape of the box to maximize the volume, when the sum w + h + d is 120.

The problem can be formulated as:
max

(w,h,d)
whd (1.70)

subject to
w + h + d− 120 = 0 (1.71)

We shall solve (1.71) for one of the variables, for example d and then substitute the result into (1.70):

d = 120− w − h (1.72)

The new problem is:
max
(w,h)

wh(120− w − h) (1.73)

Let:
f(w, h) = wh(120− w − h) = 120wh− w2h− wh2 (1.74)

Compute the stationary points from:

∂f

∂w
= 120h− 2wh− h2 = h(120− 2w − h) = 0 (1.75)

∂f

∂h
= 120w − w2 − 2wh = w(120− w − 2h) = 0 (1.76)

The solutions are: w = h = 0 (not convenient) and w = h = 40.
Determine whether (40, 40) is a minimum or maximum point. Write the determinant:

D2 =

∣∣∣∣∣
∂2f
∂w2

∂2f
∂w∂h

∂2f
∂w∂h

∂2f
∂h2

∣∣∣∣∣ =
∣∣∣∣

−2h 120− 2w − 2h
120− 2w − 2h −2w

∣∣∣∣

=
∣∣∣∣
−80 −40
−40 −80

∣∣∣∣ (1.77)

Since

D1 =
∂2f

∂w2
= −80 < 0 and D2 = 4800 > 0

the point (40, 40) is a maximum. From (1.72) we have: d = 120− 40− 40 = 40, thus the box should have the sides
equal: w = d = h = 40.
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Chapter 1. Theory of maxima and minima

Example 1.12 Maximize
f(x1, x2) = −x2

1 − x2
2 (1.78)

subject to:
x1 + x2 = 4 (1.79)
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Figure 1.12: Mesh and contour plot of f(x1, x2) = −x2
1 − x2

2 and the constraint x1 + x2 − 4 = 0

As shown in Figure 1.12, the constrained maximum of f(x1, x2) must be located on the curve resulted as the
intersection of the function surface and the vertical plane that passes through the constraint line. In the plot showing
the level curves of f(x1, x2), the point that maximizes the function is located where the line x1+x2+4 = 0 is tangent
to one level curve.

Analytically, this point can be determined by the method of substitution, as follows:
Solve (1.79) for x2:

x2 = 4− x1 (1.80)

and replace it into the objective function. The new unconstrained problem is:

max
x1

(−x2
1 − (4− x1)2

)
(1.81)

The stationary point of f(x1) = −x2
1 − (4− x1)2 is calculated by letting the first derivative be zero:

−2x1 − 2(4− x1)(−1) = 0 (1.82)

which, gives x10 = 2.
The second derivative f ′′(x10) = −4 is negative, thus x10 = 2 is a maximizer of f(x1). From (1.80), x20 =

4− x10 = 2, so the solution of the constrained optimization problem is (2, 2).

Example 1.13 Minimize
f(x1, x2) = 20− x1x2 (1.83)

subject to:
x1 + x2 = 6 (1.84)

Substitute x2 = 6− x1 from (1.84) into (1.83) and obtain the unconstrained problem:

max
x1

20− x1(6− x1) (1.85)

The stationary point is computed from the first derivative of f(x1):

f ′(x1) = −6 + 2x1 = 0, x10 = 3 (1.86)

Because the second derivative f ′′(x10) = 2 is positive, the stationary point is a minimizer of f(x1). Because x2 =
6 − x1, the point (x10 = 3, x20 = 3) minimizes the function f(x1, x2) subject to the constraint (1.84). As shown
in Figure 1.13, the minimum obtained is located on the parabola resulted as the intersection of the function surface
and the vertical plane containing the constraint line, or, in the contour plot, it is the point where the constraint line
is tangent to a level curve.
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Figure 1.13: Mesh and contour plot of f(x1, x2) = 20− x1x2 and the constraint x1 + x2 − 6 = 0

1.3.4 Lagrange multipliers

In case the direct substitution cannot be applied, the method of Lagrange multipliers provides a strategy
for finding the minimum or maximum value of a function subject to equality constraints. The general
problem can be formulated as:

min
x

f(x) (1.87)

subject to
gi(x) = 0, i = 1,m (1.88)

As example, consider the problem of finding the minimum of a real-valued function f(x1, x2) subject
to the constraint g(x1, x2) = 0. Let f(x1, x2) = 20−x1x2 and g(x1, x2) = x1 +x2−6 = 0, as shown in Figure
1.14. The gradient direction of f(x1, x2) is also shown, as arrows, in the same figure.
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Figure 1.14: Contour plot of f(x1, x2) = 20− x1x2 and the constraint g(x1, x2) = x1 + x2 − 6 = 0

The aim of this example is to minimimze f(x1, x2), or to find the point which lies on the level curve
with the smallest possible value and which satisfies g(x1, x2) = 0, i.e. it must lie on the constraint line too.
If we are at the point (x1 = 3, x2 = 3), the value of the function is f(3, 3) = 11 and the constraint is satisfied.
The constraint line is tangent to the level curve at this point. If we move on the line g(x1, x2) = 0 left or
right from this point, the value of the function increases. Thus, the solution of the problem is (3, 3).

In the general case, consider the point x where a level curve of a function f(x) is tangent to the con-
straint g(x). At this point, the gradient of f , ∇f(x), is parallel to the gradient of the constraint, ∇g(x). For
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Chapter 1. Theory of maxima and minima

two vectors to be parallel, they must be multiples of each other. Thus, there is a scalar value λ, so that:

∇f(x) = −λ∇g(x) (1.89)

The equation (1.89), written as:
∇f(x) + λ∇g(x) = 0 (1.90)

will provide a necessary condition for optimization of f subject to the constraint g = 0.

The method of Lagrange multipliers in case of n independent variables and m constraints, as defined by
(1.87) and (1.88) can be generalized (Avriel, 2003), (Hiriart-Urruty, 1996).

Define the Lagrangian (or augmented) function:

L(x, λ) = f(x) + λTg(x) (1.91)

where g is a column vector function containing the m constraints gi(x), and λ is a column vector m of
unknown values, called Lagrange multipliers. The function above can be written in an expanded form as:

L(x1, x2, . . . , xn, λ1, λ2, . . . , λm) = f(x1, x2, . . . , xn) + λ1g1(x1, x2, . . . , xn)
+ . . . + λmgm(x1, x2, . . . , xn) (1.92)

To locate the stationary points, the gradient of the Lagrangian function is set equal to zero:

∇L(x, λ) = ∇ (
f(x) + λT g(x)

)
= 0 (1.93)

The necessary conditions for optimum are obtained by setting the first partial derivatives of the Lagrangian
function with respect to xi, i = 1, n and λj , j = 1,m equal to zero. There are n + m nonlinear algebraic
equations to be solved for n + m unknowns, as follows:

∂L(x, λ)
∂x1

=
∂f(x)
∂x1

+
m∑

j=1

λj
∂gj(x)
∂x1

= 0

∂L(x, λ)
∂x2

=
∂f(x)
∂x2

+
m∑

j=1

λj
∂gj(x)
∂x2

= 0

. . .

∂L(x, λ)
∂xn

=
∂f(x)
∂xn

+
m∑

j=1

λj
∂gj(x)
∂xn

= 0 (1.94)

∂L(x, λ)
∂λ1

= g1(x) = 0
. . .

∂L(x, λ)
∂λm

= gm(x) = 0

Example 1.14 Find the stationary points of the function f(x1, x2) = 20−x1x2 subject to the constraint x1+x2 = 6
using the method of Lagrange multipliers.

Define the Lagrangian function:

L(x1, x2, λ) = 20− x1x2 + λ(x1 + x2 − 6) (1.95)

Obtain the stationary points from:

∂L(x1, x2, λ)
∂x1

= −x2 + λ = 0 (1.96)

∂L(x1, x2, λ)
∂x2

= −x1 + λ = 0 (1.97)

∂L(x1, x2, λ)
∂λ

= x1 + x2 − 6 = 0 (1.98)
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From (1.96) and (1.97), x1 = x2 = λ, which replaced in (1.98) gives the stationary point: x1 = 3 = x2 = λ.
This point is the solution of the constrained minimization problem from example 1.13, but the sufficient conditions

for constrained optimization will be discussed in the following section.

1.3.5 Sufficient conditions for constrained optimization

The sufficient conditions for minima or maxima in constrained optimization problems are completely de-
scribed and demonstrated in (Avriel, 2003) and (Hiriart-Urruty, 1996). The results in the case of equality
constraints can be summarized by the following:

Corollary (Avriel, 2003): Let f , g1, g2, ..., gm be twice continuously differentiable real-valued functions.
If there exist vectors x0 ∈ Rn, λ0 ∈ Rm, such that:

∇L(x0, λ0) = 0 (1.99)

and if

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2L(x0,λ0)
∂x1∂x1

. . . ∂2L(x0,λ0)
∂x1∂xp

∂g1(x0)
∂x1

. . . ∂gm(x0)
∂x1

. . . . . . . . . . . . . . . . . .
∂2L(x0,λ0)

∂xp∂x1
. . . ∂2L(x0,λ0)

∂xp∂xp

∂g1(x0)
∂xp

. . . ∂gm(x0)
∂xp

∂g1(x0)
∂x1

. . . ∂g1(x0)
∂xp

0 . . . 0
. . . . . . . . . . . . . . . . . .

∂gm(x0)
∂x1

. . . ∂gm(x0)
∂xp

0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0 (1.100)

for p = m + 1, . . . , n, then f has a strict local minimum at x0, such that

gi(x0) = 0, i = 1,m (1.101)

The similar result for strict local maxima is obtained by changing (−1)m in (1.100) to (−1)p, (Avriel,
2003).

For p = n, the matrix from (1.100) is the bordered Hessian matrix of the problem. The elements are in fact
the second derivatives of the Lagrangian with respect to all its n + m variables, xi and λj . The columns in
the right and the last rows can be easier recognized as second derivatives of L if we notice that:

∂L(x, λ)
∂λj

= gj(x) and
∂L2(x, λ)
∂λj∂xi

=
∂gj(x)

∂xi
(1.102)

Because gj(x) does not depend on λ, the zeros from lower-right corner or the matrix result from:

∂L(x, λ)
∂λj

= gj(x) and
∂L2(x, λ)
∂λj∂λi

= 0 (1.103)

When p < n, the matrices can be obtained if the rows and columns between p+1 and n−1 are excluded.

Example 1.15 For the problem from example 1.14, we shall prove that the stationary point is a minimum, according
to the sufficient condition defined above. The function to be minimized is f(x1, x2) = 20 − x1x2 and the constraint
g(x1, x2) = x1 + x2 − 6 = 0

The number of variables in this case is n = 2, the number of constraints, m = 1 and p = m + 1 = 2. The only
matrix we shall analyze is:

H2 =




∂2L(x1,x2,λ)
∂2x1

∂2L(x1,x2,λ)
∂x1∂x2

∂2L(x1,x2,λ)
∂x1∂λ

∂2L(x1,x2,λ)
∂x2∂x1

∂2L(x1,x2,λ)
∂2x2

∂2L(x1,x2,λ)
∂x2∂λ

∂2L(x1,x2,λ)
∂λ∂x1

∂2L(x1,x2,λ)
∂λ∂x2

∂2L(x1,x2,λ)
∂2λ


 (1.104)
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or

H2 =




∂2L(x1,x2,λ)
∂2x1

∂2L(x1,x2,λ)
∂x1∂x2

∂g(x1,x2)
∂x1

∂2L(x1,x2,λ)
∂x2∂x1

∂2L(x1,x2,λ)
∂2x2

∂g(x1,x2)
∂x2

∂g(x1,x2)
∂x1

∂g(x1,x2)
∂x2

0


 (1.105)

Using the results we have obtained in the example 1.14, the second derivatives of the Lagrangian function are:

∂2L(x1, x2, λ)
∂2x1

=
∂

∂x1
(−x2 + λ) = 0

∂2L(x1, x2, λ)
∂2x2

=
∂

∂x2
(−x1 + λ) = 0

∂2L(x1, x2, λ)
∂x1∂x2

=
∂

∂x2
(−x2 + λ) = −1 (1.106)

∂g(x1, x2)
∂x1

=
∂

∂x1
(x1 + x2 − 6) = 1

∂g(x1, x2)
∂x2

=
∂

∂x2
(x1 + x2 − 6) = 1

and the bordered Hessian:

H2 =




0 −1 1
−1 0 1
1 1 0


 (1.107)

The relation (1.100) is written as:

(−1)1

∣∣∣∣∣∣

0 −1 1
−1 0 1
1 1 0

∣∣∣∣∣∣
= (−1)(−2) = 2 > 0 (1.108)

thus, the stationary point (3, 3) is a minimizer of the function f subject to the constraint g = 0.

Example 1.16 Find the highest and lowest points on the surface f(x1, x2) = x1x2 +25 over the circle x2
1 +x2

2 = 18.
Figure 1.15 shows a graphical representation of the problem. The constraint on x1 and x2 places the variables

on the circle with the center in the origin and with a radius equal to
√

18. On this circle, the values of the function
f(x1, x2) are located on the curve shown in Figure 1.15 on the mesh plot. It is clear from the picture that there are
two maxima and two minima that will be determined using the method of Lagrange multipliers.
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Figure 1.15: Mesh and contour plot of f(x1, x2) = 25 + x1x2 and the constraint x2
1 + x2

2 = 18

The problem may be reformulated as: optimize f(x1, x2) = x1x2 + 25 subject to the constraint g(x1, x2) =
x2

1 + x2
2 − 18 = 0.
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1.3. Constrained optimization

Write the Lagrange function:

L(x1, x2, λ) = x1x2 + 25 + λ(x2
1 + x2

2 − 18) (1.109)

Compute the first partial derivatives of L and set them equal to zero:

Lx1 = x2 + 2λx1 = 0
Lx2 = x1 + 2λx2 = 0 (1.110)
Lλ = x2

1 + x2
2 − 18 = 0

There are four stationary points:

x10 = −3, x20 = 3, λ0 =
1
2

x10 = 3, x20 = −3, λ0 =
1
2

(1.111)

x10 = 3, x20 = 3, λ0 = −1
2

x10 = −3, x20 = −3, λ0 = −1
2

Build the bordered Hessian matrix and check the sufficient conditions for maxima and minima.

H2 =




Lx1x1 Lx1x2 gx1

Lx1x2 Lx2x2 gx2

gx1 gx2 0


 =




2λ 1 2x1

1 2λ 2x2

2x1 2x2 0


 (1.112)

Because the number of constraints is m = 1, the number of variables is n = 2 and p = 2, the sufficient condition
for a stationary point to be a minimizer of f subject to g = 0 is:

(−1)1det(H2) > 0 or det(H2) < 0 (1.113)

and for a maximizer:
(−1)2det(H2) > 0 or det(H2) > 0 (1.114)

For all points (x10, x20, λ0) given in (1.111) compute det(H2) and obtain:

(−3, 3,
1
2
) : det(H2) =

∣∣∣∣∣∣

1 1 −6
1 1 6
−6 6 0

∣∣∣∣∣∣
= −144 < 0 (1.115)

(3,−3,
1
2
) : det(H2) =

∣∣∣∣∣∣

1 1 6
1 1 −6
6 −6 0

∣∣∣∣∣∣
= −144 < 0 (1.116)

(3, 3,−1
2
) : det(H2) =

∣∣∣∣∣∣

−1 1 6
1 −1 6
6 6 0

∣∣∣∣∣∣
= 144 > 0 (1.117)

(−3,−3,−1
2
) : det(H2) =

∣∣∣∣∣∣

−1 1 −6
1 −1 −6
−6 −6 0

∣∣∣∣∣∣
= 144 > 0 (1.118)

Thus, the function f subject to g = 0 has two minima at (3,−3, 1
2) and (−3, 3, 1

2), and two maxima at (3, 3,−1
2)

and (−3,−3,−1
2).
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Figure 1.16: The sphere x2 + y2 + z2 = 4 and the point P

Example 1.17 Find the point on the sphere x2 + y2 + z2 = 4 closest to the point P (3, 4, 0) (Figure 1.16).
We shall find the point (x, y, z) that minimizes the distance between P and the sphere. In a 3-dimensional space,

the distance between any point (x, y, z) and P (3, 4, 0) is given by:

D(x, y, z) =
√

(x− 3)2 + (y − 4)2 + z2 (1.119)

Since the point (x, y, z) must be located on the sphere, the variables are constrained by the equation x2 +y2 +z2 = 4.
The calculus will be easier if instead of (1.119) we minimize the function under the square root. The problem to be
solved is then:

min
x,y,z

(x− 3)2 + (y − 4)2 + z2 (1.120)

subject to:
g(x, y, z) = x2 + y2 + z2 − 4 = 0 (1.121)

Write the Lagrangian function first:

L(x, y, z, λ) = (x− 3)2 + (y − 4)2 + z2 + λ(x2 + y2 + z2 − 4) (1.122)

and set the partial derivatives equal to zero to compute the stationary points:

Lx = 2x− 6 + 2λx = 0
Ly = 2y − 8 + 2λy = 0 (1.123)
Lz = 2z + 2λz = 0
Lλ = x2 + y2 + z2 − 4 = 0

The system (1.123) has two solutions:

(S1) : x10 =
6
5
, y10 =

8
5
, z10 = 0, λ10 =

3
2

(1.124)

and
(S2) : x10 = −6

5
, y10 = −8

5
, z10 = 0, λ10 = −7

2
(1.125)

It is clear from Figure 1.16 that we must find a minimum and a maximum distance between the point P and the
sphere, thus the sufficient conditions for maximum or minimum have to be checked.
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1.3. Constrained optimization

The number of variables is n = 3, the number of constraints m = 1 and p from (1.100) has two values: p = 2, 3.
We must analyze the sign of the determinants for the following matrices:

For p = 2:

H22 =




Lxx Lxy Lxλ

Lxy Lyy Lyλ

Lxλ Lyλ Lλλ


 =




Lxx Lxy gx

Lxy Lyy gy

gx gy 0


 (1.126)

For p = 3:

H23 =




Lxx Lxy Lxz Lxλ

Lxy Lyy Lyz Lyλ

Lxz Lyz Lzz Lzλ

Lxλ Lyλ Lzλ Lλλ


 =




Lxx Lxy Lxz gx

Lxy Lyy Lyz gy

Lxz Lyz Lzz gz

gx gy gz 0


 (1.127)

The sufficient conditions for minimum in this case are written as:

(−1)1det(H22) > 0, and (−1)1det(H23) > 0 (1.128)

and the sufficient conditions for maximum:

(−1)2det(H22) > 0, and (−1)3det(H23) > 0 (1.129)

The second derivatives of the Lagrangian function with respect to all its variables are:

Lxx = 2 + 2λ, Lyy = 2 + 2λ, Lzz = 2 + 2λ
Lxy = 0, Lxz = 0, Lxλ = gx = 2x (1.130)
Lyz = 0, Lyλ = gy = 2y, Lzλ = gz = 2z

From (1.126) and (1.127) we obtain:

H22 =




2 + 2λ 0 2x
0 2 + 2λ 2y
2x 2y 0


 (1.131)

H23 =




2 + 2λ 0 0 2x
0 2 + 2λ 0 2y
0 0 2 + 2λ 2z
2x 2y 2z 0


 (1.132)

For the first stationary point, (S1), the determinants of H22 and H23 are:

detH22 =

∣∣∣∣∣∣

5 0 12
5

0 5 16
5

12
5

16
5 0

∣∣∣∣∣∣
= −80 (1.133)

detH23 =

∣∣∣∣∣∣∣∣

5 0 0 12
5

0 5 0 16
5

0 0 5 0
12
5

16
5 0 0

∣∣∣∣∣∣∣∣
= −400 (1.134)

The point (6
5 , 8

5 , 0) is then a minimizer of the problem because:

(−1)1det(H22) = 80 > 0, and (−1)1det(H23) = 400 > 0 (1.135)
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For the second stationary point, (S2), the determinants are:

detH22 =

∣∣∣∣∣∣

−5 0 −12
5

0 −5 −16
5

−12
5 −16

5 0

∣∣∣∣∣∣
= 80, (1.136)

detH23 =

∣∣∣∣∣∣∣∣

−5 0 0 −12
5

0 −5 0 −16
5

0 0 −5 0
−12

5 −16
5 0 0

∣∣∣∣∣∣∣∣
= −400 (1.137)

The point (−6
5 ,−8

5 , 0) is a maximizer of the problem because:

(−1)2det(H22) = 80 > 0, and (−1)3det(H23) = 400 > 0 (1.138)

The point on the sphere closest to P is: (6
5 , 8

5 , 0).

Example 1.18 Find the extrema of the function:

f(x, y, z) = x + 2y + z (1.139)

subject to:

g1(x, y, z) = x2 + y2 + z2 − 1 = 0 (1.140)
g2(x, y, z) = x + y + z − 1 = 0 (1.141)

In this case we have two constraints and 3 variables. Two new unknowns will be introduced and the Lagrange
function is written as:

L(x, y, z, λ1, λ2) = x + 2y + z + λ1(x2 + y2 + z2 − 1) + λ2(x + y + z − 1) (1.142)

The stationary points are computed from:

Lx = 1 + 2λ1x + λ2 = 0
Ly = 2 + 2λ1y + λ2 = 0
Lz = 1 + 2λ1z + λ2 = 0 (1.143)

Lλ1 = x2 + y2 + z2 − 1 = 0
Lλ2 = x + y + z − 1 = 0

The solutions of (1.143) are:

(S1) : x0 = 0, y0 = 1, z0 = 0, λ10 = −1
2 , λ20 = −1 (1.144)

(S2) : x0 = 2
3 , y0 = −1

3 , z0 = 2
3 , λ10 = 1

2 , λ20 = −5
3 (1.145)

The number p from (1.100) is 3 in this case, therefore we have to analyze the sign of the determinant:

detH2 =

∣∣∣∣∣∣∣∣∣∣

Lxx Lxy Lxz g1x g2x

Lxy Lyy Lyz g1y g2y

Lxz Lyz Lzz g1z g2z

g1x g1y g1z 0 0
g2x g2y g2z 0 0

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

2λ1 0 0 2x 1
0 2λ1 0 2y 1
0 0 2λ1 2z 1
2x 2y 2z 0 0
1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣

(1.146)

The necessary condition for minimum (when m = 2 and p = 3) is:

(−1)2detH2 > 0 or detH2 > 0 (1.147)
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and for maximum:
(−1)3detH2 > 0 or detH2 < 0 (1.148)

For (S1):

detH2 =

∣∣∣∣∣∣∣∣∣∣

−1 0 0 0 1
0 −1 0 2 1
0 0 −1 0 1
0 2 0 0 0
1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣

= −8 < 0 (1.149)

thus, the point (x0 = 0, y0 = 1, z0 = 0) is a maximizer of f subject to g1 = 0 and g2 = 0.
For (S2):

detH2 =

∣∣∣∣∣∣∣∣∣∣

1 0 0 4
3 1

0 1 0 −2
3 1

0 0 1 4
3 1

4
30 −2

3
4
3 0 0

1 1 1 0 0

∣∣∣∣∣∣∣∣∣∣

= 8 > 0 (1.150)

thus, the point (x0 = 2
3 , y0 = −1

3 , z0 = 2
3 ) minimizes f subject to g1 = 0 and g2 = 0.

1.3.6 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions are an extension of the Lagrangian theory to include nonlinear
optimization problems with inequality constraints.

If x is a vector of n variables, x = [x1 x2 . . . xn]T and f a nonlinear real-valued function, f : Rn → R,
consider the constrained minimization problem:

(P ) : min
x

f(x) (1.151)

subject to

gi(x) = 0, i = 1,m (1.152)
hj(x) ≤ 0, j = 1, p (1.153)

where f , gi, hj are twice differentiable real-valued functions.
The Lagrangian function is written as:

L(x, λ, µ) = f(x) +
m∑

i=1

λigi(x) +
p∑

j=1

µjhj(x)

= f(x) + λTg(x) + µTh(x) (1.154)

where:

• λ = [λ1 λ2 . . . λm]T and µ = [µ1 µ2 . . . µp]T are vector multipliers,

• g = [g1(x) g2(x) . . . gm(x)]T and h = [h1(x) h2(x) . . . hp(x)]T are vector functions.

The necessary conditions for a point x0 to be a local minimizer of f are:

∇f(x0) +
∑m

i=1 λi∇gi(x0) +
∑p

j=1 µj∇hj(x0) (1.155)

gi(x0) = 0, i = 1,m (1.156)
hj(x0) ≤ 0, j = 1, p (1.157)

µjhj(x0) = 0, j = 1, p (1.158)
µj ≥ 0, j = 1, p (1.159)

λi, unrestricted in sign, i = 1,m (1.160)
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The relations (1.155) - (1.160) are called the Karush-Kuhn-Tucker conditions, (Boyd and Vandenberghe,
2004). For any optimization problem with differentiable objective and constraint functions, any optimal
points must satisfy the KKT conditions.

• The first condition (1.155) is a system of n nonlinear equations with n + m + p unknowns, obtained
by setting equal to zero all the partial derivatives of the Lagrangian with respect to x1, x2, . . . xn,
i.e. ∇L(x0, λ, µ) = 0.

• The following two conditions (1.156, 1.157), are the inequality and equality constraints which must
be satisfied by the minimizer of the constrained problem, and are called the feasibility conditions.

• The relation (1.158) is called the complementary slackness equation

• The relation (1.159) is the non-negativity condition for the µ multipliers.

The KKT conditions are necessary conditions for optimum, they are means to verify solutions. Not all the
points that satisfy (1.155)-(1.160) are optimal points. On the other hand, a point is not optimal if the KKT
conditions are not satisfied.

If the objective and inequality constraint functions (f and hj) are convex and gi are affine, the KKT
conditions are also sufficient for a minimum point.

A function hj is affine if it has the form:

hj = A1x1 + A2x2 + . . . Anxn + b (1.161)

In a few cases, it is possible to solve the KKT conditions (and therefore, the optimization problem)
analytically. but the sufficient conditions are difficult to verify.

Example 1.19 Minimize
f(x1, x2) = e−3x1 + e−2x2 (1.162)

subject to:

x1 + x2 ≤ 2 (1.163)
x1 ≥ 0 (1.164)
x2 ≥ 0 (1.165)

The constraints are re-written in the standard form:

x1 + x2 − 2 ≤ 0 (1.166)
−x1 ≤ 0 (1.167)
−x2 ≤ 0 (1.168)

The Lagrangian of the problem is written as:

L(x1, x2, µ1, µ2, µ3) = e−3x1 + e−2x2 + µ1(x1 + x2 − 2) +
+ µ2(−x1) + µ3(−x2) (1.169)

and the KKT conditions are:

∂L

∂x1
= −3e−3x1 + µ1 − µ2 = 0 (1.170)

∂L

∂x2
= −2e−2x2 + µ1 − µ3 = 0 (1.171)

µ1(x1 + x2 − 2) = 0 (1.172)
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µ2(−x1) = 0 (1.173)
µ3(−x2) = 0 (1.174)

µ1 ≥ 0 (1.175)
µ2 ≥ 0 (1.176)
µ3 ≥ 0 (1.177)

First we may notice that x1 ≥ 0 and x2 ≥ 0, thus they can be either zero, or strictly positive. Therefore, we have
four cases:

1.) x1 = 0, x2 = 0 The relations (1.170), (1.171), (1.172) become:

−3 + µ1 − µ2 = 0 (1.178)
−2 + µ1 − µ3 = 0 (1.179)

µ1(−2) = 0 (1.180)

and µ1 = 0, µ2 = −3, µ3 = −2. The conditions (1.176) (1.177) are violated so x1 = x2 = 0 is not a solution
of the problem.

2.) x1 = 0, x2 > 0 Because x2 is strictly positive, from (1.174) we obtain µ3 = 0, and the relations (1.170), (1.171),
(1.172) are recalculated:

−3 + µ1 − µ2 = 0 (1.181)
−2e−2x2 + µ1 = 0 (1.182)

µ1(x2 − 2) = 0 (1.183)

From (1.182) we obtain µ1 = 2e−2x2 6= 0 so the relation (1.183) is satisfied only for x2 = 2. Then µ1 = 2e−4.
From (1.181) we obtain: µ2 = −3 + 2e−4 < 0 and the constraint (1.176) is not satisfied.

This case will not give a solution of the problem.

3.) x1 > 0, x2 = 0 Because x1 is strictly positive, from (1.173) we obtain µ2 = 0, and the relations (1.170), (1.171),
(1.172) are recalculated:

−3e−3x1 + µ1 = 0 (1.184)
−2 + µ1 − µ3 = 0 (1.185)

µ1(x1 − 2) = 0 (1.186)

From (1.184) we obtain µ1 = 3e−3x2 6= 0 so the relation (1.186) is satisfied only for x1 = 2. Then µ1 = 3e−6.
From (1.185) we obtain: µ3 = −2 + 3e−6 < 0 and the constraint (1.177) is not satisfied.

This situation is not a solution of the problem either.

4.) x1 > 0, x2 > 0 Since x1 and x2 cannot be zero, from (1.173) and (1.174) we obtain: µ2 = 0 and µ3 = 0.

The relations (1.170), (1.171), (1.172) become:

−3e−3x1 + µ1 = 0 (1.187)
−2e−2x2 + µ1 = 0 (1.188)

µ1(x1 + x2 − 2) = 0 (1.189)

The value of µ1 cannot be zero because this would make zero the exponentials from (1.187) and (1.188) which
is not valid. Then x1 + x2 − 2 = 0, or x2 = 2− x1.

29



Chapter 1. Theory of maxima and minima

From (1.187) and (1.188) we obtain:
µ1 = 3e−3x1 = 2e−2x2 (1.190)

and then:
3e−3x1 = 2e−2(2−x1), or e−5x1+4 =

2
3

(1.191)

The solution is:
x1 =

1
5
(4− ln

2
3
) = 0.88, x2 = 2− x1 = 1.11 (1.192)

and µ1 = 0.21 > 0.

The necessary conditions for the point (0.88, 1.11) to be a minimizer of the constrained optimization problem
are satisfied.

The contour plot of f and the linear constraint are shown in Figure 1.17. The constraint x1 +x2 = 2 is tangent
to a level curve at the point P (0.88, 1.11) thus it is the global minimizer of f subject to the constraints.
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Figure 1.17: Contour plot of f and the constraint x1 + x2 − 2 = 0

1.4 Exercises

1. Locate the stationary points of the following functions and determine their character:

a) f(x) = x7

b) f(x) = 8x− x4/4

c) f(x) = 50− 6x + x3/18

2. Consider the functions f : R2 → R:

a) f(x1, x2) = x1x2

b) f(x1, x2) = x1/2 + x2
2 − 3x1 + 2x2 − 5

c) f(x1, x2) = −x2
1 + x3

2 + 6x1 − 12x2 + 5

d) f(x1, x2) = 4x1x2 − x4
1 − x4

2

e) f(x1, x2) = −x1x2e
x2
1+x2

2
2

Compute the stationary points and determine their character using the second derivative test.
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3. Find the global minimum of the function:

f(x1, x2) = (x1 − 2)2 + (x2 − 1)2

in the region

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 2

4. Find the extrema of the function f : R3 → R:

f(x1, x2, x3) = 2x2
1 + 3x2

2 + 4x2
3 − 4x1 − 12x2 − 16x3

5. Use the method of substitution to solve the constrained-optimization problem:

min
(x1,x2)

(
x2

1 + x2
2 − 49

)

subject to
x1 + 3x2 − 10 = 0

6. Use the method of Lagrange multipliers to find the maximum and minimum values of f subject to
the given constraints

a) f(x1, x2) = 3x1 − 2x2, x2
1 + 2x2

2 = 44

b) f(x1, x2, x3) = x2
1 − 2x2 + 2x3

3, x2
1 + x2

2 + x2
3 = 1

c) f(x1, x2) = x2
1 − x2

2, x2
1 + x2

2 = 1

7. Minimize the surface of a cylinder with a given volume.
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